Timescales for pluton growth, magma-chamber formation and super-eruptions – Nature

  • Lipman, P. W. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3, 42–70 (2007).

    ADS 
    Article 

    Google Scholar 

  • Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W. & Taylor, R. Z. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4–12 (2004).

    Article 

    Google Scholar 

  • Bachmann, O., Miller, C. & De Silva, S. The volcanic–plutonic connection as a stage for understanding crustal magmatism. J. Volcanol. Geotherm. Res. 167, 1–23 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Frazer, R. E., Coleman, D. S. & Mills, R. D. Zircon U‐Pb geochronology of the Mount Givens Granodiorite: implications for the genesis of large volumes of eruptible magma. J. Geophys. Res. Solid Earth 119, 2907–2924 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lipman, P. W. & Bachmann, O. Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11, 705–743 (2015).

    ADS 
    Article 

    Google Scholar 

  • Charlier, B. L. A. et al. Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J. Petrol. 46, 3–32 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • de Silva, S. L. & Gosnold, W. D. Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J. Volcanol. Geotherm. Res. 167, 320–335 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Sparks, R. S. J. et al. Formation and dynamics of magma reservoirs. Philos. Trans. R. Soc. A 377, 20180019 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Druitt, T. H., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shamloo, H. I. & Till, C. B. Decadal transition from quiescence to supereruption: petrologic investigation of the Lava Creek Tuff, Yellowstone Caldera, WY. Contrib. Mineral. Petrol. 174, 32 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Pamukçu, A. S., Wright, K. A., Gualda, G. A. R. & Gravley, D. Magma residence and eruption at the Taupo Volcanic Center (Taupo Volcanic Zone, New Zealand): insights from rhyolite‑MELTS geobarometry, diffusion chronometry, and crystal textures. Contrib. Mineral. Petrol. 175, 48 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Rubin, A. E. et al. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356, 1154–1156 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Annen, C., Scaillet, B. & Sparks, R. S. J. Thermal constraints on the emplacement rate of a large intrusive complex: the Manaslu Leucogranite, Nepal Himalaya. J. Petrol. 47, 71–95 (2006).

    CAS 
    Article 

    Google Scholar 

  • Annen, C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. J. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gregg, P. M., de Silva, S. L., Grosfils, E. B. & Parmigiani, J. P. Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J. Volcanol. Geotherm. Res. 241–242, 1–12 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Paterson, S., Okaya, D., Memeti, V., Economos, R. & Miller, R. B. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies. Geosphere 7, 1439–1468 (2011).

    ADS 
    Article 

    Google Scholar 

  • Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    CAS 
    Article 

    Google Scholar 

  • Solano, J. M. S., Jackson, M. D., Sparks, R. S. J., Blundy, J. D. & Annen, C. Segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J. Petrol. 53, 1999–2026 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cashman, K. V., Sparks, R. S. J. & Blundy, J. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Jackson, M., Blundy, J. & Sparks, R. S. J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564, 405–409 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seropian, G., Rust, A. & Sparks, R. S. J. The gravitational stability of lenses in magma mushes: confined Rayleigh-Taylor instabilities. J. Geophys. Res. 123, 3593–3607 (2017).

    Article 

    Google Scholar 

  • Walker, B. A., Grunder, A. L. & Wooden, J. L. Organization and thermal maturation of long-lived arc systems: evidence from zircons at the Aucanquilcha volcanic cluster, northern Chile. Geology 38, 1007–1010 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cashman, K. V. & Giordano, G. Calderas and magma reservoirs. J. Volcanol. Geotherm. Res. 288, 28–45 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cooper, K. M. & Kent, A. J. R. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Andersen, N. L., Jicha, B. R., Singer, B. S. & Hildreth, W. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage. Proc. Natl Acad. Sci. 114, 12407–12412 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van Zalinge, M. E., Sparks, R. S. J., Cooper, F. J. & Condon, D. Early Miocene large-volume ignimbrites of the Oxaya Formation, Central Andes. J. Geol. Soc. 173, 716–733 (2016).

    Article 

    Google Scholar 

  • García, M., Gardeweg, M., Clavero, J. & Hérail, G. Arica map: Tarapacá region, scale 1:250,000. In: Carta Geológica de Chile, Serie Geología Básica, 84, Servicio Nacional de Geología y Minería, Santiago (2004).

  • Keller, C. B. Chron.jl: a Bayesian framework for integrated eruption age and age-depth modelling. https://doi.org/10.17605/osf.io/TQX3F (2018).

  • van Zalinge, M. E., Sparks, R. S. J. & Blundy, J. D. Petrogenesis of the large-volume Cardones ignimbrite, Chile; development and destabilization of a complex magma–mush system. J. Petrol. 58, 1975–2006 (2018).

    Article 
    CAS 

    Google Scholar 

  • Freymuth, H., Brandmeier, M. & Wörner, G. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes. Contrib. Mineral. Petrol. 169, 58 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Lissenberg, C. J., Rioux, M., Shimizu, N., Bowring, S. A. & Mével, C. Zircon dating of oceanic crustal accretion. Science 323, 1048–1050 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wotzlaw, J.-F. et al. Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41, 867–870 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Samperton, K. M., Bell, E. A., Barboni, M., Keller, C. B. & Schoene, B. Zircon age-temperature-compositional spectra in plutonic rocks. Geology 45, 983–986 (2017).

    ADS 
    Article 

    Google Scholar 

  • Ellis, B. S. et al. Split-grain 40Ar/39Ar dating: integrating temporal and geochemical data from crystal cargoes. Chem. Geol. 457, 15–23 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pinto, L., Hérail, G., Fontan, F. & Parseval, P. Neogene erosion and uplift of the western edge of the Andean Plateau as determined by detrital heavy mineral analysis. Sediment. Geol. 195, 217–237 (2007).

    ADS 
    Article 

    Google Scholar 

  • Wotzlaw, J. F., Decou, A., von Eynatten, H., Worner, G. & Frei, D. Jurassic to Palaeogene tectono-magmatic evolution of northern Chile and adjacent Bolivia from detrital zircon U-Pb geochronology and heavy mineral provenance. Terra Nova 23, 399–406 (2011).

    ADS 
    Article 

    Google Scholar 

  • Hora, J. M. et al. Volcanic biotite-sanidine 40Ar/39Ar age discordances reflect Ar partitioning and pre-eruption closure in biotite. Geology 38, 923–926 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Platzman, E. S., Sparks, R. S. J. & Cooper, F. J. Fabrics, facies, and flow through a large-volume ignimbrite: Pampa De Oxaya, Chile. Bull. Volcanol. 82, 8 (2020).

    ADS 
    Article 

    Google Scholar 

  • Schöpa, A. & Annen, C. The effects of magma flux variations on the formation and lifetime of large silicic magma chambers. J. Geophys. Res. Solid Earth 118, 926–942 (2013).

    ADS 
    Article 

    Google Scholar 

  • Schöpa, A., Annen, C., Dilles, J. H., Sparks, R. S. J. & Blundy, J. D. Magma emplacement rates and porphyry copper deposits: thermal modeling of the Yerington batholith, Nevada. Econ. Geol. 112, 1653–1672 (2018).

    Article 

    Google Scholar 

  • Burgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Petford, N., Cruden, A. R., McCaffrey, K. J. W. & Vigneresse, J. L. Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408, 669–673 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Burov, E., Jaupart, C. & Guillou-Frottier, L. Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J. Geophys. Res. Solid Earth 108, 2177 (2003).

    ADS 
    Article 

    Google Scholar 

  • Suckale, J., Qin, Z., Picchi, D., Keller, T. & Battiato, I. Bistability of buoyancy-driven exchange flows in vertical tubes. J. Fluid Mech. 850, 525–550 (2018).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 

  • Jackson, M. D., Cheadle, M. J. & Atherton, M. P. Quantitative modeling of granitic melt generation and segregation in the continental crust. J. Geophys. Res. 108, 2332–2353 (2003).

    ADS 

    Google Scholar 

  • Huppert, H. E. & Sparks, R. S. J. The generation of granite by intrusion of basalt into the continental crust. J. Petrol. 29, 599–624 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bachmann, O. & Bergantz, G. W. Gas percolation in upper crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J. Volcanol. Geotherm. Res. 149, 85–102 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Huber, C., Bachmann, O. & Manga, M. Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting. J. Petrol. 51, 847–867 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mason, B., Pyle, D. & Oppenheimer, C. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 66, 735–748 (2004).

    ADS 
    Article 

    Google Scholar 

  • Mark, D. F. et al. A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: forcing of Quaternary climate and implications for hominid occupation of India. Quat. Geochronol. 21, 90–103 (2014).

    Article 

    Google Scholar 

  • Renne, P. R., Cassata, W. S. & Morgan, L. E. The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: time for a change? Quat. Geochronol. 4, 288–298 (2009).

    Article 

    Google Scholar 

  • Lee, J. Y. et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507–4512 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mark, D. F., Stuart, F. M. & de Podesta, M. New high-precision measurements of the isotopic composition of atmospheric argon. Geochim. Cosmochim. Acta 75, 7494–7501 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Stoenner, R. W., Schaeffer, O. A. & Katcoff, S. Half-lives of argon-37, argon-39, and argon-42. Science 148, 1325–1328 (1965).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Renne, P. R. & Norman, E. B. Determination of the half-life of 37Ar by mass spectrometry. Phys. Rev. C 63, 047302 (2001).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Renne, P. R., Sharp, Z. D. & Heizler, M. T. Cl-derived argon isotope production in the CLICIT facility of OSTR reactor and the effects of the Cl-correction in 40Ar/39Ar geochronology. Chem. Geol. 255, 463–466 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Renne, P. R. Some footnotes to the optimization-based calibration of the 40Ar/39Ar system. Geol. Soc. Lond. Spec. Publ. 378, 21–31 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Renne, P. R., Mundil, R., Balco, G., Min, K. & Ludwig, K. R. Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim. Cosmochim. Acta 74, 5349–5367 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Renne, P. R., Mundil, R., Balco, G., Min, K. & Ludwig, K. R. Response to the comment by W. H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology”. Geochim. Cosmochim. Acta 75, 5097–5100 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mark, D. F. et al. High-precision 40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes Boundary. Quat. Geochronol. 39, 1–23 (2017).

    Article 

    Google Scholar 

  • Ellis, B. S. et al. Split-grain 40Ar/39Ar dating: integrating temporal and geochemical data from crystal cargoes. Chem. Geol. 457, 15–23 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889 (1971).

    ADS 
    Article 

    Google Scholar 

  • Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–502 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wolf, R. A., Farley, K. A. & Kass, D. M. Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer. Chem. Geol. 148, 105–114 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McDougall, I., & Harrison, T. M. Geochronology and Thermochronology by the 40Ar/39Ar Method (Oxford Univ. Press, 1999).

  • Cassata, W. S. & Renne, P. R. Systematic variations of argon diffusion in feldspars and implications for thermochronometry. Geochim. Cosmochim. Acta 112, 251–287 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.